Step of Proof: p-fun-exp-add1-sq
11,40
postcript
pdf
Inference at
*
1
I
of proof for Lemma
p-fun-exp-add1-sq
:
1.
A
: Type
2.
f
:
A
(
A
+ Top)
3.
x
:
A
4.
n
:
5.
isl(
f
(
x
))
(
f
^
n
+1(
x
)) ~ (
f
^
n
(outl(
f
(
x
))))
latex
by (Unfold `p-fun-exp` ( 0)
)
CollapseTHEN (((RWO "simple-primrec-add" 0)
CollapseTHENA (Auto
C
)
)
CollapseTHEN ((Reduce 0)
CollapseTHEN ((NatInd (-2))
CollapseTHEN (Reduce 0)
)
)
)
C
latex
C
1
:
C1:
4.
isl(
f
(
x
))
C1:
(
f
o p-id() (
x
)) ~ (p-id()(outl(
f
(
x
))))
C
2
: .....upcase..... NILNIL
C2:
4.
isl(
f
(
x
))
C2:
5.
n
:
C2:
6. 0 <
n
C2:
7. (primrec(
n
- 1;
f
o p-id() ;
i
,
g
.
f
o
g
)(
x
))
C2: 7.
~
C2: 7.
(primrec(
n
- 1;p-id();
i
,
g
.
f
o
g
)(outl(
f
(
x
))))
C2:
(primrec(
n
;
f
o p-id() ;
i
,
g
.
f
o
g
)(
x
)) ~ (primrec(
n
;p-id();
i
,
g
.
f
o
g
)(outl(
f
(
x
))))
C
.
Definitions
n
-
m
,
n
+
m
,
-
n
,
s
~
t
,
i
j
,
f
^
n
,
Top
,
x
:
A
.
B
(
x
)
,
,
,
{
x
:
A
|
B
(
x
)}
,
A
,
False
,
P
Q
,
x
:
A
B
(
x
)
,
Void
,
a
<
b
,
#$n
,
A
B
,
x
:
A
.
B
(
x
)
,
t
T
Lemmas
ge
wf
,
nat
properties
,
simple-primrec-add
,
le
wf
origin